
One Inequality with angle bisectors.

Question 3.

Let ABC be a triangle inscribed in a circle and let la  ma
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where ma,mb,mc are the lengths of the angle bisectors and Ma,Mb,Mc are the lengths

of the angle bisectors extended until they meet the circle.

Prove that la
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and that equality holds iff ABC is equilateral triangle.

Solution by Arkady Alt, San Jose,California, USA.
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Let K and L be, intersection points of bisector of angle A with BC and circumcircle,

respectively and let F be area of ABC. Similarity of triangles ABC and ALC implies
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.Thus, remains to prove inequality
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(by Chebishev’s Inequality) and a3  b3  c3  3abc (by AM-GM Inequality)
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